7 research outputs found

    Computing in Additive Networks with Bounded-Information Codes

    Full text link
    This paper studies the theory of the additive wireless network model, in which the received signal is abstracted as an addition of the transmitted signals. Our central observation is that the crucial challenge for computing in this model is not high contention, as assumed previously, but rather guaranteeing a bounded amount of \emph{information} in each neighborhood per round, a property that we show is achievable using a new random coding technique. Technically, we provide efficient algorithms for fundamental distributed tasks in additive networks, such as solving various symmetry breaking problems, approximating network parameters, and solving an \emph{asymmetry revealing} problem such as computing a maximal input. The key method used is a novel random coding technique that allows a node to successfully decode the received information, as long as it does not contain too many distinct values. We then design our algorithms to produce a limited amount of information in each neighborhood in order to leverage our enriched toolbox for computing in additive networks

    On the optimality of treating interference as noise

    No full text
    It is shown that in the K-user interference channel, if for each user the desired signal strength is no less than the sum of the strengths of the strongest interference from this user and the strongest interference to this user (all values in dB scale), then the simple scheme of using point to point Gaussian codebooks with appropriate power levels at each transmitter and treating interference as noise at every receiver (in short, TIN scheme) achieves all points in the capacity region to within a constant gap. The generalized degrees of freedom (GDoF) region under this condition is a polyhedron, which is shown to be fully achieved by the same scheme, without the need for time-sharing. The results are proved by first deriving a polyhedral relaxation of the GDoF region achieved by TIN, then providing a dual characterization of this polyhedral region via the use of potential functions, and finally proving the optimality of this region in the desired regime. © 2013 IEEE
    corecore